Retarded Functional Differential Equations

A global point of view

Research Notes in Mathematics No. 21

Salah-Eldin A. Mohammed

Technical Summary.

This book lays the foundations of a geometric theory of retarded functional differential equations on manifolds. It was the first book to be published on differential-geometric aspects of deterministic hereditary systems on Riemannian manifolds. In this monograph I deal with the following general framework:

Let X be a manifold. Typically we take X to be a Riemannian manifold (finite or infinite-dimensional) or a Banach manifold with a sufficiently smooth linear connection. Consider a manifold of paths $P([-r,0], X)$ which inherits its differentiable structure from the ambient manifold X. A retarded functional differential equation (RFDE) on X is a continuous map $F : [0,a) \times P([-r,0], X) \to TX$ such that for each $(t, \theta) \in [0,a) \times P([-r,0], X)$ the vector $F(t, \theta) \in T_{\theta(0)}X$, the tangent space to X at $\theta(0)$. A trajectory of F is a C^1 path $x : [-r,a) \to X$ such that

$$x'(t) = F(t, x_t), \quad t \in [0,a)$$
$$x_0 = \theta \in P([-r,0], X).$$

In the above equation x_t stands for the segment $x|[t-r,t]$ of the solution x. In Chapter 1, I develop a localization technique (Lemma 1.1) in order to obtain a unique local trajectory for the above initial value problem (Theorem 1.2, Chapter 1, p.22). This is done under mild regularity conditions on F, assuming that X is a Banach manifold which admits a linear connection and $P = L^2_1$, the space of all Sobolev paths θ on X with square integrable derivatives. If X carries a Finsler and F satisfies suitable growth conditions, I prove that global trajectories of the hereditary equation exist for all time. Hence one gets a semiflow $R^+ \times L^2_1 \to L^2_1$ on the space of initial paths $L^2_1([-r,0], X)$ (Theorems (1.3)-(1.5)).
The main objective of Chapter 2 is to characterize the topological structure of the critical set \(\{ \theta : F(\theta) = 0 \} \) when \(F \) is autonomous and \(X \) is \(n \)-dimensional, smooth Riemannian. It is first proved that solutions of the hereditary equation may reach equilibrium by converging asymptotically to a constant critical path, just as for vector fields (Theorem 2.1). The key idea here is to use parallel transport to show that a smooth hereditary coefficient \(F \) pulls back into a a smooth vector field \(\xi^F \) on \(L_1^2 \) (Theorem 2.2 and corollary). In spite of the infinite degeneracy of the critical set \(C(F) \), we are able to isolate a class of gradient-like hereditary equations for which the critical set is a closed smooth submanifold of \(L_1^2 \) with codimension \(n \) (Proposition 2.4, p. 59). A Morse index exists for this class of hereditary equations (Proposition 2.5, p.60). The index is constant on each connected component of \(C(F) \). When \(X \) is compact, one can count the number of critical components in \(C(F) \). This way I prove Morse inequalities for such hereditary equations (Theorem (2.4) and corollaries). In particular it follows from these inequalities that \(F \) has only a finite number of critical components. The number of critical components with index \(m \) is always greater than or equal to the \(m \)-th Betti number of \(X \), the rank of its \(m \)-th singular homology group (Corollary 2.4.2).

In Chapter 3, I linearize the semiflow of \(F \) by differentiating the canonical vector field \(\xi^F \) covariantly in \(L_1^2([-r, 0], X) \). This linearization defines a compacting semiflow on the tangent bundle \(TL_1^2([-r, 0], X) \) (Theorem 3.3, p.79). Using semigroup techniques along the fibers of \(TL_1^2([-r, 0], X) \) we construct a Whitney direct sum splitting of the tangent bundle into two subbundles: the unstable and the stable one. Cf. classical results of Hale in the flat case \(X = \mathbb{R}^n \). This splitting is invariant under the linearized semiflow. The unstable subbundle is finite-dimensional, and on it the linearized semiflow can be continued backwards to give a genuine flow which is defined for all time. Within the stable subbundle the linearized semiflow decays exponentially fast in the Sobolev Riemannian metric along each fiber in \(TL_1^2([-r, 0], X) \). This is the Stable Bundle Theorem (Theorem 3.6, p.100).

Vector fields on the ambient manifold \(X \) are used in Chapter 4 to generate examples of FDE's on the manifold. These include classical vector fields, differential-delay equations (DDE's), the delayed development and the Levin-Nohel equation. It is shown in Theorem 4.1 (p.109) that a gradient Levin-Nohel equation on a Riemannian manifold may not admit non-trivial periodic solutions. I also give a detailed study of the Functional Heat equation (FHE) in this chapter of the monograph. The FHE is shown to correspond to a discontinuous but closed FDE on the Fréchet space of smooth functions on a compact Riemannian manifold. It is interesting to note here that despite the discontinuity of the equation and the infinite-dimensionality of the function space, the FHE still displays dynamical properties very similar to those of continuous finite-dimensional FDE's. In general, however, the
FHE can be solved forward in time only along a closed Fréchet subspace of the state space. *Backward* solutions of the FHE do exist on the complementary subspace in the hyperbolic case. See Chapter 4§5, pp. 113-133.